If it's not what You are looking for type in the equation solver your own equation and let us solve it.
k^2-2k-83=-3
We move all terms to the left:
k^2-2k-83-(-3)=0
We add all the numbers together, and all the variables
k^2-2k-80=0
a = 1; b = -2; c = -80;
Δ = b2-4ac
Δ = -22-4·1·(-80)
Δ = 324
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{324}=18$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2)-18}{2*1}=\frac{-16}{2} =-8 $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2)+18}{2*1}=\frac{20}{2} =10 $
| 6+7n–8n=+4n | | -13x–7x+4x+x= | | p^2-4p-68=6 | | -3+4p=-3 | | v^2+4v-58=6 | | -41d=205 | | d3=1 | | 90-6r+30= | | 180=x(x+15)+39 | | -20x-5=25 | | v^2-4v-66=-6 | | -3-7x=8 | | -2+4d=8 | | n^2-6n-79=-4 | | 5x+3(x-20)=4x-20 | | x^2+18x+75=10 | | 8x+4460=-4x52 | | a^2+18a+49=0 | | 2x+12=5x–18 | | b^2-10b-23=0 | | 2-3x+6x=2 | | -2a-3=-9 | | 6x-5=4x+35. | | v^2-8v-65=0 | | (2x-1)+31+90=108 | | i/5=-9 | | 9x/3–1=5 | | 5x-12°=3x+48° | | 5=9x/3–1 | | 12n-4=20 | | 27=(4+5)x | | 200=(x+9)10 |